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Abstract. We consider the problem of option pricing when the underlying asset follows a general semi-
martingale process. After reviewing the foundations of arbitrage pricing theory for semimartingales and
the link with Lévy processes, we introduce a general method to price options in this framework based on
Fourier and Wavelet analysis.
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1 Introduction

Despite its vast popularity, it is often emphasized that
the Black-Scholes (BS) model is based on a set of very
strict assumptions: unlimited lending/borrowing, absence
of transaction costs, possibility of continuous portfolio re-
balancing, to mention the main ones. In addition, the hy-
pothesis on the dynamics driving the evolution of the un-
derlying asset being lognormal is certainly not supported
by empirical evidence.

In this short paper, we present a general framework
to deal with non-Gaussian returns in the context of op-
tion pricing. Having a pedagogical goal in mind, we follow
a qualitative kind of approach; the interested reader will
find all the mathematical details in the citated papers. The
basic idea is to look at the most general class of processes
for which it is possible to build an arbitrage-free market.
First, we introduce some basic concepts from semimartin-
gales theory and infinitely divisible distributions (Sect. 2).
In Section 3, we briefly discuss the mathematical foun-
dations of arbitrage pricing theory when the underlying
follows a semimartingale process and review the “smile
modelling” with non-Gaussian dynamics. In Section 4, we
finally introduce a general method to price options (ei-
ther European and American) for Lévy processes that is
compatible with the absence of arbitrage opportunity as-
sumption.

2 Lévy distributions and processes

The properties of r.v. whose distribution are closed un-
der convolution were intensively studied by Paul Lévy
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in the 20s. We will assume throughout that a probabil-
ity space (Ω,F ,P) has been assigned. A r.v. X is called
stable, or α-stable if, given a set of i.i.d. random vari-
ables (X1, X2, · · · , Xn) we have X1 + X2 + · · · + Xn

d=
(an + n1/αX), where the equality means the two sets of
variables are identically distributed, an are real numbers,
α ∈ (0, 2] and Xi are independent “copies” of X . An-
other definition of stability for r.v. refers to the follow-
ing limit theorem for i.i.d.: X is a stable r.v. if, given a
set (Y1, Y2, · · · , Yn) of i.i.d. variables, the following limit
identity holds:

lim
n→∞

n∑
i=1

Yi
bn

+ an
d= X, (1)

with an, bn real. In other words, a Lévy distribution can
be thought of as the domain of attraction of sums of inde-
pendent and identically distributed random variables. The
two above definitions are indeed completely equivalent [1].
In the limit α ↑ 2 the α-stable reduces to a Gaussian ran-
dom variable. We will make use of the notation X ∼ αS
meaning that X is an α-stable random variable. As it is
well known, the properties of a generic r.v. are uniquely
associated to the knowledge of its characteristic function
(CF) g(k), defined as the Fourier transform of the prob-
ability density function f(x) of X , i.e. g(k) = FT [f ](k).
Equivalently, we have

g(k) = Ef
[
eikX

]
, (2)

where Ef is the expectation of the r.v. X respect to
its density f(x). It is important pointing out that the
concept of characteristic function plays a central role in
our discussion, even when dealing with processes instead
of simple random variables. Recall that a similar defini-
tion can be extended to deal with vector-valued variables
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X = (X1, X2, · · · , Xd), as well. A very important result
by Lévy states that the CF of a stable variable X can be
written as follows:

g(k) = exp
[
ibk − σα|k|α

(
1− iβ tan

πα

2
k

|k|

)]
, α 6= 1,

g(k) = exp
[
ibk − σ|k|

(
1 + iβ ln |k| 2k

π|k|

)]
, α = 1,

α ∈ (0, 2], β ∈ [−1, 1], σ > 0. (3)

Therefore, the CF is completely specified by the knowl-
edge of the set of parameters (α, β, σ, b). In a symmetrical
α-stable (SαS) distribution, we have β = 0. The meaning
of the other parameters is well known: σ determines the
width of the distribution (it reduces to the standard devi-
ation for α ↑ 2), while α itself is responsible for the tail be-
havior of the density, since P (X > x) ≈ F (α,σ,b)

xα , x� 1.
A review of some properties of αS distributions can be
found, for instance in [2,3]. It is important to stress that
the CF in equation (3) cannot be analytically Fourier-
inverted, apart from some specific cases. This happens
when: i) α = 2 (Gaussian distribution), α = 1 (Cauchy
distribution), α = 1/2 (Lévy-Smirnov distribution).

We now focus onto an important generalization of the
α-stability concept, that of infinitely divisible distributions
(e.g. see [3]). Given an integer k ≥ 1, a r.v. X is said to be
infinitely divisible (ID) if one can find a finite set of i.i.d.
variables

(
Y

(k)
1 , Y

(k)
k , · · · , Y (k)

k

)
such that

X
d=

k∑
i=1

Y
(k)
i . (4)

In other words, an ID variable is such that its density of
probability can be always represented as a finite convolu-
tion of densities of i.i.d. random variables. This property
obviously generalizes the α-stable case described above.
The CF function of a ID variable g(k) can be represented
by the so-called Lévy-Khintchine formula (LK) [3]

g(k) = eφ(k);

φ(k) = ibk − Ck2

2
+
∫

R

[
eikx − 1− ih(x)k

]
ν(dx), (5)

where ν(dx) is known as the Lévy integral measure and
its support is usually R in 1d. To ensure convergence, the
following condition is usually imposed on the set of suit-
able measures:

∫
R

min(|x|2, 1)ν(dx) < ∞. However, this
choice is not unique and it is related to the function h(x).
In particular, h(x) has to be a truncation function: with
the above restriction on the Lévy measure, h(x) must be-
have linearly for small arguments and identically vanish
for large ones, e.g. h(x) = x1|x|≤1. If we assume a dif-
ferent regularization condition on the Lévy measure, then
h(x) has to change accordingly, and so will b. Whatever is
our choice, from the LK representation we have that an ID
variable is uniquely identified by the triplet (b, C, ν(dx)).
If ν(dx) identically vanishes on its support, then the loga-
rithm of CF reduces to a quadratic function in k. In other

words, the Lévy measure ν(dx) completely characterizes
the departure from a pure “Gaussian” behavior. b deter-
mines the mean of the distribution, while C is a measure
or width, reducing to the variance when the distribution is
Gaussian. Despite the apparent simplicity of the above re-
sult, its applications are widespread in probability theory,
as many of the known distributions are indeed in the ID
class. A couple of important examples can be used to illus-
trate this point. If X ∼ αS(b, β, σ), then a LK representa-
tion exists for different values of the “tail” parameter α.
This has to to do with the behavior of the measure at the
origin. In all cases α ∈ (0, 1) ∪ (1, 2), the Lévy measure is
absolutely continuous respect the Lebesgue measure, and
reads

ν(dx) =
c+

x1+α
dx, x > 0

ν(dx) =
c−

|x|1+α
dx, x < 0

β =
c+ − c−
c+ + c−

, c+, c− > 0. (6)

If α = 1, the Lévy measure is proportional to x−2dx. In
1d, it is possible to explicitly evaluate the integral with
the above measure and the result is given in equation (3).
Finally, the limit case α ↑ 2 corresponds to the Gaussian
distribution and the Lévy measure identically vanishes on
its support.

Another special case is when the Lévy measure has
the same structure as in the α-stable case but with an
exponential-like behavior at large arguments (i.e. typically
ν(dx) is proportional to x−(1+α) exp(−Kx)). The associ-
ated ID random variable has a leptokurtic distribution but
exponential tails and sometimes referred to as the “trun-
cated Lévy” distribution [4]. Its interest in the context of
financial engineering is that several studies suggest that
this distribution is a good proxy for the unconditional dis-
tribution of the return increments in financial series. This
statistical property is however shared by other ID distri-
butions as well [14]. For that reason, assuming stationarity
in the signal, it has been suggested that the use of ID dis-
tributions could overcome some difficulties inherent in the
usual Gaussian statistics for the return increments.

In this paper, we will only concentrate on some issues
related to derivatives pricing theory with non-Gaussian
processes. To this aim, we need to investigate whether a
stochastic dynamics not based on the usual Wiener pro-
cess {Wt}t≥0 can be used in practice. It is important to
stress from the beginning that any attempt to use a model
based on a dynamics of the underlying which is not a sim-
ple Itô process has to answer at least to the following
questions: i) Is it possible to build an arbitrage free mar-
ket from the above dynamics? ii) Is the model mathemat-
ically tractable for pricing derivatives? iii) Is it possible
to have an efficient calibration of the models parameters
from market data? iv) How do I hedge short derivatives
positions in the new framework?

For sake of brevity, we will shortly address the first two
questions only, although from a practical point of view the
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other two are certainly not less important. Some other is-
sues will be more extensively and rigorously discussed in
a forthcoming paper [5]. The good new (at least from a
mathematical point of view) is that it is indeed possi-
ble to build a stationary stochastic process {Lt}t≥0 with
independent increments such that its characteristic func-
tion has the form of equation (5). Such a process is known
in the literature as a Lévy process [6], and includes the
Wiener process as a special case. More precisely, by using
the properties: i) Lt+s − Lt and Lt′+s − Lt′ are indepen-
dent; ii) Lt+s−Lt d= Ls−L0, we have the group property
of the CF

gt+s(k) = gt(k)gs(k), ∀t, s > 0, (7)

which implies that gt(k) = exp[tφ(k)], i.e. the logarithm
of the CF is a separable function of time and k. This is
intuitively obvious, as the stationarity property reflects
on the possibility to completely describe the process from
the knowledge of the increments distribution. Equally im-
portant is the fact that we can use a Lévy process to
build other processes using stochastic integration. In other
words, given a Lévy process {Lt}t≥0 in a suitable proba-
bility space (Ω,F ,Pt) and a predictable process f(t) [7],
it is possible to generalise the Itô stochastic integral w.r.t.
{Lt}t≥0 instead of a Brownian motion. Skipping all de-
tails (see also [7]) the integral is defined as a suitable limit
procedure from simple functions as a generalization of the
standard Itô procedure, although a rigorous proof of that
result is very difficult to achieve due to technical issues.
The result is that quantities like

It(f) =
∫ t

0

f(s)dLs, t > 0, (8)

are well defined and can be interpreted as the cumulated
profit by holding a stock portfolio and investing in it with
a strategy f(t). The stock Lt is supposed to evolve stochas-
tically following a Lévy process. This property is necessary
if our aim is to build a meaningful framework for option
pricing for Itô diffusions and more general processes, as
we shortly describe in the next section.

3 Arbitrage pricing and semimartingales

A complete account of the problem of replication and
derivatives pricing can be found in standard textbooks
and well-known papers and references therein [8]. Here,
we will remind some of the fundamental results.

In option pricing theory, the main point from a hedg-
ing/pricing perspective, is the possibility of building a
self-financing portfolio out of traded assets (in equity
options they are typically stocks and savings accounts).
The aim consists in finding a strategy that replicates,
at least approximately, the payoff of the option. In the
Black-Scholes framework, based on the assumption that
the stochastic process for the stock {St}t≥0 follows a geo-
metrical Brownian motion with constant coefficients (i.e.

dSt/St = µdt + σdWt) this replication can be perfectly
achieved and the writer (seller) of the option does not in-
cur any residual risk [9]. For more general processes (and
in the real world), such a strategy cannot be followed:
however we build our portfolio, we will be faced with a
residual “replication risk”. Although exact replication can
only be guaranteed in a BS world, it seems quite natural
to start looking at more general pricing models that can,
at least, guarantee the property of being arbitrage free
(AF). We mean the following: in an AF market, it is im-
possible to build a self-financing portfolio of traded assets
that is worth 0 at inception and spontaneously evolves to a
strictly positive value with finite probability. This technical
definition means that if the absence of arbitrage is guar-
anteed, we cannot build a model that allows us to make
a profit on the average (whatever will be the evolution of
the financial assets in the future) by using a self-financing
strategy from an initial empty portfolio. In a two-parties
contract we can guarantee that none of the dealers will
systematically make money out of the other only if the no-
arbitrage restriction is imposed on the model. The reader
has to be aware of the fact the in reality arbitrage op-
portunities do appear in the market for very short times.
However, a meaningful model has to contain a notion of
absence of arbitrage in it, as only an AF model gives an
“ideal”, “unbiased” pricing/hedging technique and gives a
benchmark result which may help, for instance, to detect
whether arbitrage opportunities really appear.

In the context of option pricing, the most general pro-
cesses that guarantee that the AF condition is fulfilled are
the so-called semimartingales. For a review of the defini-
tion of this class of processes see [7]. Without entering into
mathematical details, we just remind that a semimartin-
gale with stationary and independent increments is a Lévy
process. Therefore, it is possible to prove that, given a
semimartingale with independent increments {Xt}t≥0, its
characteristic function can be represented by

E
[
eik(Xt−X0)

]
= exp

{
iBtk −

Ctk
2

2

+
∫ t

0

∫
R

[
eikx − 1− if(x)k

]
ν(dx,ds)

}
.

(9)

Every semimartingale is uniquely defined by the triplet
{Bt, Ct, ν(dx,dt)}. For a Lévy process, we have, in partic-
ular, {Bt = tb, Ct = tC, ν(dx,dt) = dtµ(dx)} and, as we
stated in the previous section, the process is completely
defined by the CF of the increments equation (5). In a
multidimensional setting, b, C are replaced by a linear and
a quadratic form, respectively. By the fundamental theo-
rem of option pricing [8], we know that a pricing model
based on a semimartingale representation of the stock evo-
lution is AF but not “complete”. In other words, although
it is possible to find an option price which is AF in the
sense above mentioned, this price is not unique and it is
not possible to exactly replicate an option position. The
problem is actually well known by practitioners: in reality
exact replication is never achievable, due to transaction
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costs and market imperfections [10]. In the present set-
ting, the absence of exact replication can be associated to
the presence of jumps in the underlying.

However, a model based on a Lévy dynamics for the as-
set has several advantages. One example is given by the so-
called smile modelling [11]. In practice, the way the Black-
Scholes model is used is to extract the implied volatility
out of the price of vanilla options whose quotations are
available in the market (in the equity markets, for exam-
ple, they are European call and put options on stocks).
Then, a volatility surface is defined by looking at different
strikes and maturities. In a perfect BS world, this surface
would be everywhere flat (in the BS formula the volatil-
ity is constant), so the curvature of the implied volatility
surface is an indirect signal of the approximations inher-
ent in the BS analysis. However, from the knowledge of
the implied volatility surface, it is possible to build a dy-
namical model in which the original BS volatility σBS is
replaced by a function of asset and time σ(St, t) which is
called local volatility and such that the new model is com-
patible with the market-quoted options. Then, we use this
“market-adjusted” model to price the exotic options and
ensure consistency with the vanilla ones [11].

The above task can be accomplished due to the fact
that a representation of the option price is available in
terms of a PDE as follows from the Feynman-Kac theorem
[7]. In a Gaussian framework (as in BS), the PDE reduces
to a simple heat-equation, but a similar procedure can
be carried out for non-diffusion processes as well. In the
Lévy case, the differential operator in the equation has
to be replaced by a non-local integro-differential one and
reads [5,6]

Af(x) = b
∂f(x)
∂x

+
1
2
C
∂2f(x)
∂x2

+
∫
R

[
f(x+ u)− f(x)− h(u)

∂f(x)
∂x

]
ν(du),

(10)

where h(x) is a truncation function and f(x) is a generic
smooth function. The simplest situation is that of a pro-
cess of diffusion with Poisson jumps (see for instance
[12]). To gain some insight, let λ is the (constant) in-
tensity of the counting process for the jumps and F (dx)
the measure of the jumps, i.e. assuming F (dx) abso-
lutely continuous with respect to the Lebesgue measure,
F (dx) = ρ(x)dx = P(jump ∈ [x, x + dx)). Otherwise
stated, a compound Poisson process with N(t) jumps of
size ∆i in [0, t] is given by J(t) =

∑N(t)
i=1 ∆i. Alternatively,

we can write J(t) =
∫ t

0

∫
E xF (dx)ds where E is the sup-

port of the measure of the jumps. The “jump measure”
F (dx) is built “pointwise” by adding all contributions of
the jumps in the time interval [0, t] in a similar way as for
the local density operator in condensed matter physics.
From the general theory of semimartingales, we have that
for a Poisson jump process ν(dx,dt) = λdtρ(x)dx, where
λ is defined such that P(N(t) = n) = e−λt(λt)n/n!, i.e.,
as above mentioned, it represents the average number of
jumps occurring in a unit time interval.

It is possible to use the above framework in the context
of smile modelling. The idea is indeed to incorporate some
of the deviation from the simple BS analysis into the jump
component of the asset dynamics. In this case we have that
the stock follows a mixed jump-diffusion dynamics of the
kind dS(t)/S−(t) = µdt + σdWt + JdN(t) where J is a
random variable (the jump), N(t) is a Poisson counting
process with intensity λ as before, and S−(t) indicates the
limit from the left of S(t). The presence of jumps in the
dynamics allows to better capture the shape of the tail of
the distribution of asset returns, and therefore reduce and
smooth the curvature of the local volatility surface respect
to the simple BS case, as the out-of-the money options are
better priced [13].

4 Wavelet pricing

When dealing with semimartingale models, one issue is the
availability of an efficient methodology to price contingent
claims. In fact, speed of computation and accuracy are es-
sential elements in a liquid market. A general method can
be introduced, which reduces to the standard BS formula
when the underlying follows a geometrical Brownian mo-
tion. Let us consider a vanilla European call option (all
details and generalizations can be found in [15]) whose
terminal payoff at time T is given by fT (ST ) = (ST −K)+

and K is the strike price. Let us suppose that we observe
the price at time t ≤ T . The price of the contingent claim
at t, given that the stock is worth St at time t, is given
by the usual formula Ct(St, T ) = e−r(T−t)EP∗

t [fT (ST )];
where EP∗

t (·) means “take the expectation of the argu-
ment w.r.t. the an equivalent martingale measure given
the information available at time t”, and r is the short-
term interest rate. The martingale measure is the only
distribution such that the resulting option price is arbi-
trage free, and it does not in general coincides with the
hystorical distribution of the assets. More explicitly, we
have

Ct(St, T ) =
∫
R

G(St, t;x, T )fT (x)dx. (11)

The fundamental pricing equation is completely specified
once the transition kernel (the terminal-value Green func-
tion) (GF)G(y, t;x, T ), t ≤ T is known. In a BS world, due
to the Gaussian nature of the dynamics, the Green func-
tion has a simple form which provides, after integration in
equation (11), the celebrated BS pricing formula. Notice
that, from a probabilistic point of view, G(y, t;x, T ) plays
also the role of the conditional distribution of the asset
St. For that reason, the GF is directly related to the CF
in equation (2) through a Fourier or Laplace transform.
In situations where the GF is translationally invariant we
have G(y, t;x, T ) = G(y−x;T − t), and a simple solution
consists in observing that Ct(St, T ) reduces to a convolu-
tion product Ct = G(T − t)∗ fT . Therefore, in the Fourier
space, we have TF [Ct] = TF [G]TF [fT ], which can be eas-
ily computed numerically. This result is general, in fact it
is possible to prove that for any European option written
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on St, a representation of its price through convolution
products is available [15]. The key observation here is the
fact that if we use a Lévy process for our underlying, an
explicit representation of the CF exists as in equation (9).
This includes, among others, the “truncated Lévy” and
the hyperbolic processes that well reproduce the dynam-
ics of historical financial series [14,4].

Sometimes, the Green function of the problem is more
complicated to find. This typically happens when the op-
tion pricing problem has non-trivial boundary conditions,
as in the case of barrier options. A barrier option is a
contingent claim with expiry T whose terminal payoff de-
pends in some way on the underlying asset having crossed
a fixed level B at any time before T . In this case, as well
as for general problems defined on a finite support, we
need to compute a boundary-value Green function, and
the Fourier method doesn’t apply anymore. For Ameri-
can options, although the Fourier/Laplace-transform ap-
proach can be used, it suffers from numerical convergence
problems. This is due to the fact that an American option
is a special case of a free-boundary problem: the value of
the option at any time t < T is defined by the knowledge of
the exercise boundary which is typically a function of time.
It is not possible to have analytical forms of the bound-
ary, and then one is forced to find it numerically with the
use of the Hamilton-Jacobi-Bellman principle [10]. When
using the Fourier representation this procedure can be nu-
merically intensive [15].

An alternative method consists in projecting the payoff
function fT (x) at time T into a suitable complete basis set
of functions {ek(x)}∞k=0 in L2. We have the representation

fT (x) =
∞∑
k=0

ak(T )ek(x), ak(T ) = (fT (x), ek(x)) , (12)

where (·, ·) is the usual internal product in L2. Using the
above representation, it is easy to prove that the integral
relation equation (11) can be translated into a recursive
equation for the coefficients {ak(t)}∞k=0:

ak(t) =
∞∑
l=0

Mkl(t|T )al(T )

Mkl(t|T ) =
∫
R

∫
R

G(y, t;x, T )ek(y)el(x)dxdy. (13)

Therefore, the value of the option at t can be recon-
structed once the coefficient {ak(t)}∞k=0 have been com-
puted. Usually, although this procedure that involves N2

operations, as opposed to the FFT algorithm that only re-
quires M log2M operations, typically N � M given the
same degree of precision. However, If we use a basis of
orthogonal polynomials, this procedure cannot be easily
applied to American options since in this case the payoff
function ft(x) is not differentiable at the exercise bound-
ary, and the above sum does not converges uniformly. In
particular, at-the-money options are going to be the most
affected by this [15]. If, on the contrary, we choose as com-
plete set a wavelet basis (see, for example [16]), we can
get rid of the problem of finding the exercise boundary.

A wavelet basis {ψ(x−ab )}b∈R+,a∈R can be indeed used to
approximate with arbitrary precision any function con-
taining “irregularities”. In a continuous setting, a wavelet
transform (WT) of a L2(R) function reads

WTψ[f ](a, b) =
1√
cψ|a|

∫
R

f(x)ψ
(
x− a
b

)
,

cψ
·= 2π

∫
R

|FT [Ψ ](ω)|2
|ω| dω, (14)

and, by tuning the two parameters (a, b) the WT can scan
the support of the function to be analyzed by ”zooming”
into a for sufficiently small b. This is based on the idea
of Multi-Scale analysis [16]. In other words, a wavelet ba-
sis ensures pointwise convergence of the expansion even
for non-smooth functions. The presence of the cψ factor
is needed in order to have an isometry (as in the Fourier
case) between the direct and the dual space representa-
tion. The analyzing wavelet ψ() has to be chosen accord-
ing to the problem one has to solve. In option pricing it is
suitable to have to work with wavelets with non compact
support [15]. The advantage of using wavelet representa-
tion are: i)The problem can be still represented in terms
of the CF of the process (as given by the LK formula)
and ii) It avoids complex numerical search of the exercise
boundary in multi-factor models, i.e. when the option de-
pends on several underlying assets, as in this situation the
exercise boundary is a high-dimensional manifold.
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